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We propose a general approach to study spin models with two symmetric absorbing states. Starting from the
microscopic dynamics on a square lattice, we derive a Langevin equation for the time evolution of the
magnetization field, that successfully explains coarsening properties of a wide range of nonlinear voter models
and systems with intermediate states. We find that the macroscopic behavior only depends on the first deriva-
tives of the spin-flip probabilities. Moreover, an analysis of the mean-field term reveals the three types of
transitions commonly observed in these systems—generalized voter, Ising and directed percolation. Monte
Carlo simulations of the spin dynamics qualitatively agree with theoretical predictions.
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I. INTRODUCTION

The nonequilibrium dynamics of interacting particle sys-
tems with absorbing states is a central issue in modern sta-
tistical mechanics �1,2�. In the last years much interest has
been given to the special case of models with two symmetric
�Z2 symmetry� absorbing states �3–5�, due to the relevance in
many different contexts of a subclass of them, the so-called
voter models. They have been widely used in diverse disci-
plines to study different dynamics, such as species competi-
tion �6�, allele frequency in genetics �7�, kinetics of hetero-
geneous catalysis �8�, and more recently, opinion formation
�9� and language spreading �10�. In these models, the state of
a particle in a lattice site evolves according to the density of
states in its near neighborhood. Interesting dynamical behav-
iors arise depending on the specific updating rules, the num-
ber of states, and the functional form of the transition prob-
abilities between configurations. For instance, it has been
found that the addition of memory or inertia in the spin dy-
namics �11,12�, the introduction of intermediate states
�13–15�, or the use of nonlinear transitions �16�, result in a
drastic change of the coarsening properties and final outcome
of the system.

Despite that the dynamical rules of the models are very
different in nature, many of them seem to share the same
macroscopic behavior, such as coarsening and criticality.
However, the minimal conditions that a microscopic dynam-
ics must hold in order to observe a particular behavior have
not been clearly identified yet. In other words, given a spin
model defined by its flipping transition probability and inter-
action range, can we anticipate how the system will evolve
over time?

In this paper, we try to answer this question by developing
an approach that connects the microscopic dynamics with the
macroscopic space-time evolution of the system in square
lattices. We derive a Langevin equation for the magnetization
field, and find that, at the macroscopic level, the properties
are only determined by the first three derivatives of the tran-
sition probabilities.

Our Langevin equation coincides with that postulated by
Hammal et al. �3� by symmetry arguments, but now the co-
efficients of the different terms have a clear explanation in
terms of the transition probabilities. The analysis of this
equation helps to understand some of the open questions
about phase ordering in these systems, that is, whether the
coarsening is driven by curvature as in the Ising model �17�,
or it is without surface tension as in the original voter model
�VM� �4�. This approach also explains, from a different per-
spective than in Ref. �15�, why adding intermediate states to
the VM leads to an effective surface tension. Moreover, nu-
merical simulations of the spin dynamics reveal the condi-
tions on the interaction range, to observe the three possible
classes of phase transitions unveiled in the Langevin equa-
tion �3�.

II. MODEL AND LANGEVIN EQUATION

Each site r= �r1 , . . . ,rd� of a d-dimensional square lattice
is occupied by one particle with a spin that can assume either
value 1 �up� or −1 �down�. The dynamics consists of choos-
ing, at each time step, a site r at random and flipping the
spin Sr at this site with a probability that is a function
f�−Sr�r� of the product between Sr and the particle’s local
magnetization �r� 1

z �r�/rSr�, where the sum is over the
z-nearest-neighboring sites r� of r. z is an arbitrary integer
number that defines the interaction range �e.g., z=4 for first-
nearest-neighbor interactions�. In order to ensure that the
fully ordered configurations Sr=1 or Sr=−1 for all r are
absorbing, the flipping probability f must vanish when the
spin is aligned with all its neighboring spins, i.e., f�−1�=0.

We want to derive a Langevin equation for the field �r�t�,
which is a continuous representation of the spin at site r, at
time t. For this we follow a standard approach �see Ref.
�15��, and consider an ensemble of � copies of the system,
each copy representing a particular spin configuration. This
is equivalent to assume � spin particles at each site of the
lattice �our microscopic model corresponds exactly to �=1,
but this substitution can be made at the end of the calcula-
tion�. In this approach �r�t� is replaced by the average spin
value �r�t�→ 1

�� j=1
� Sr

j , and �r by the average local field �r
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→ 1
z �r�/r�r��t�, at site r at time t. In a time step, a site x and

one particle from that site with spin Sx are randomly chosen.
Then the spin attempts to flip with probability f�−Sx�x�. If
the flipping occurs, then the field on the entire lattice, repre-
sented as ���, changes only at site x by −2Sx /�. Thus the
rising and lowering transition rates are W����
→ ����

2
��x,r�=W��� ,x , t�= 1

2 �1��x�f���x�. The master
equation for the time evolution of the probability distribution
P���� , t� is

�P����,t�
�t

= �
x
	W
��� +

2

�
�x,r → ����P
��� +

2

�
�x,r,t�

+ W
��� −
2

�
�x,r → ����P
��� −

2

�
�x,r,t�

− W
��� → ��� −
2

�
�x,r�P����,t�

− W
��� → ��� +
2

�
�x,r�P����,t�� . �1�

An expansion to second order in 1 /� leads to the following
Fokker-Planck equation:

�

�t
P����,t� = �

r
−

1

�

�

��
�2�W+��,r,t�

− W−��,r,t��P����,t��

+
1

�2

�2

��2 �2�W+��,r,t� + W−��,r,t��P����,t�� .

�2�

From Eq. �2�, using the expressions for W��� ,r , t� and res-
caling time with �, we arrive to the Langevin equation

��r�t�
�t

= �1 − �r�t��f��r� − �1 + �r�t��f�− �r� + �r�t� ,

�3�

where �r�t� is a Gaussian white noise with correlations

�r�t��r��t��� = ��1 − �r�t��f��r�

+ �1 + �r�t��f�− �r���r,r���t − t��/�1/2.

�4�

Note that up to now our derivation is completely general, and
the fact that the system has two absorbing states is only
present in the condition for the flipping probability. Now we
look for an approximation to Eq. �3� which, however, cap-
tures the behavior of a wide range of absorbing Z2 models.
As explained in Ref. �3�, this is obtained with a �6 model,
i.e., when the right-hand side of Eq. �3� is proportional to �5.
Thus, we expand f around �r=0 up to fourth order in �r, but
also making f vanish at �r=−1 �the condition for existence
of absorbing states at �1�:

f��r� =
1

2
�1 + �r��c + a�r + d�r

2 − b�r
3� , �5�

where the real coefficients a, b, c, and d are, for conve-
nience, defined as �primes denoting derivatives�

c � 2f�0�, a � 2f��0� − c ,

d � f��0� − a, b � −
f��0�

3
+ d . �6�

To obtain a closed equation for �r�t�, we replace expression
�5� for f��k� into Eq. �3� and make the substitution �r=�r
+	�r, where we define the Laplacian operator 	�r

� 1
z �r�/r��r�−�r�=�r−�r. We then expand to first order in

	�r �assuming that �r is a smooth function of r in the long
time limit, so that 	�r
�r�1�, and obtain the following
Langevin equation for �r:

��

�t
= �1 − �2��a� − b�3� + �a + c + �d − 2a − 3b��2�	� + � ,

�7�

with correlations for the noise

�r�t��r��t��� = ��1 − �2��c + d�2�

+ �a − c + 2d��	���r,r���t − t�� , �8�

where � denotes �r�t�. Equations �7� and �8� agree with the
Langevin equation proposed in Ref. �3�, based on symmetry
arguments, to describe order-disorder phase transitions in
general models with two symmetric absorbing states �the
noise correlation in their equation is a simplified version of
Eq. �8��. We have derived this expression from the micro-
scopic dynamics, and therefore the different parameters of
the theory have a clear interpretation as a function of the
transition rates. The first two terms of Eq. �7� can also be
obtained by identifying the field �r with the average value
Sr� of the spin at site r over all spin configurations, and
following the moments approach technique used by Krapiv-
sky et al. for the original VM �8�. This corresponds to the
�→� limit, for which fluctuations are neglected and the
equation for � becomes deterministic.

We now use Eq. �7� to gain insight into the macroscopic
ordering dynamics. At the mean-field �MF� level, where the
noise term is neglected, Eq. �7� takes the form of a time-
dependent Ginzburg-Landau equation �17� ��

�t =D	�− �V
�� ,

with the potential V���=− a
2�2+ a+b

4 �4− b
6�6 and D an effec-

tive diffusion constant. In Fig. 1 we sketch the shape of V
and its associated f��� for different values of a and b. When
a0 �f��0� f�0��, V has two symmetric minima, thus the
system coarsens driven by surface tension �17�. On the con-
trary, when a�0 �f��0�� f�0��, the minimum is at �=0,
then the system remains in an active disordered state with
particles continuously flipping their spins, and a global mag-
netization that fluctuates around zero.

To illustrate our previous results, we now analyze a gen-
eral class of three-state models �13,14�, known to exhibit
curvature driven by surface tension, as recently shown in
Ref. �15�. They are composed by two external absorbing
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states S= �1, and an intermediate state S=0. The transition
of a particle from S=−1 to S=1 happens in two stages. If we
denote by �−, �0 and �+, the densities of nearest-neighboring
particles in states −1, 0, and 1, respectively, the particle first
switches from S= �1 to S=0 with probability ��+�0 /2, and
then with the same probability ��+�0 /2 from S=0 to S
= �1. Hence, disregarding the intermediate state, this model
can be thought as one with two absorbing states S= �1, and
an effective transition probability from S=−1 to S=1 equals
to ��++�0 /2�2. In the same way, we believe that models with
many intermediate states behave as equivalent two-state
models with effective transition probabilities that are nonlin-
ear in the local densities, and our theory can be applied. We
test this by considering a two-state model proposed by
Abrams and Strogatz to study the competition between two
languages �10�. The transition probabilities are given by
P��1→ �1�=��

q , where q is a positive real number, so that
the q=1 case reduces to the original VM, while q�2 corre-
sponds to models with one or more intermediate states. In
terms of the local field �=2�+−1, the flipping probability is
f���= � 1+�

2 �q. Calculating the coefficients defined in Eq. �6�,
and replacing them into Eq. �7� we obtain

��

�t
=

�q − 1�
3 � 2q �1 − �2��6� + �q − 2��q − 3��3�

+
q

2q �2 + �q − 1��q − 4��2�	� + � . �9�

When q�1 �f��0�� f�0��, the stable solution is �=0, corre-
sponding to a disordered active system. When q1 �f��0�
 f�0��, the stable solutions are �= �1, thus the system or-
ders driven by surface tension until it reaches one of the
absorbing states ��=1,−1 for all r�. In particular, this type
of ordering is observed when q=2, for which the Langevin
equation has a similar form as the one derived by Dall’Asta
et al. for three-state models

��

�t
=

1

2
�� − �3� + �1 − �2�	� + �1 − �2� , �10�

confirming the above mentioned equivalence with a two-
state model with quadratic transition probability. The special
case q=1 corresponds to the VM, with Langevin equation

��

�t
= 	� + �1 − �2 − 	�� . �11�

Neglecting the Laplacian in the noise term, this equation is
the same as the one suggested by Dickman et al. �18�. Even
though the potential is zero, the system still orders due to the
presence of the Laplacian, but without surface tension.

III. NUMERICAL SIMULATIONS OF THE MICROSCOPIC
DYNAMICS

Equation �7� shows that, at the MF level, the macroscopic
behavior of a particular model defined by the probability f is
only determined by the coefficients a and b, that are ex-
pressed in terms of the derivatives of f around �k=0. As
qualitatively predicted by the MF theory, and numerically
confirmed in Ref. �3�, for a fix value b�b*, there is a unique
generalized voter �GV� order-disorder transition at a critical
value aGV, that separates an active stationary state with ab-
solute magnetization m=0 for a�aGV, from a frozen ordered
state with m=1 for aaGV. For bb*, as a is increased, a
symmetry breaking Ising transition is observed at a value aI,
followed by a directed percolation �DP� transition at a value
aDPaI. For a�aI the system is disordered �m=0�, whereas
for aI�a�aDP it gets partially magnetized �0�m�1�.
Above aDP, the system relaxes to the fully ordered state �m
=1�. Since we know the connection between the macro-
scopic and the microscopic dynamics expressed in Eqs. �7�
and �5�, respectively, we now study these transitions by a
Monte Carlo simulation of the model. This approach is
complementary to the one followed by Hammal et al. in
which they integrate the Langevin equation; and it also al-
lows to test the field theory.

We performed numerical simulations on a two-
dimensional square lattice with first-nearest neighbor �NN�
interactions �z=4�. We used flipping probabilities that are
polynomial functions of the form of Eq. �5�, for b=−0.25,
0.5, and 3.0, and various values of a. Coefficients c and d
were set in order to arbitrarily fix the point f��=1�=1. Start-
ing from an ordered configuration of down spins �initial
quenching�, we flipped the spins of four neighboring sites at
the center of the lattice and let the system evolve. We found
that the average density of up spins N and the survival prob-
ability P, for the three values of b, decay at the critical tran-
sition point aGV as N� t� and P� t−� �see Fig. 2�, where �
�0 and ��0.95 agree with the exponents 0 and 1.0 respec-
tively, of the GV universality class �2,18�. Also, one can see
in Fig. 2�a� that the average density of interfaces has, at aGV,
a logarithmic decay with time ���� / �2 ln t��, as in the VM
�8�.

These results are in agreement with that of Dornic et al.
�4� where, by studying the dynamics of coarsening without
surface tension �also with first-NN interactions�, they conjec-
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FIG. 1. �Color online� Flipping probability f �left boxes� and its
associated potential V �right boxes� vs local field �. Curves corre-
spond to coefficient values a=−0.3 �dotted�, a=0 �solid�, a=0.3
�dashed�, for b=−0.25 �top� and b=1.0 �bottom�. For both values of
b, a single-well and double-well potentials are obtained for a�0
and a0, respectively.
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tured that all models with Z2 symmetry and without bulk
noise exhibit GV transitions. This apparent disagreement be-
tween theory �three transitions� and simulations �only GV
transition� comes from the fact that Ising dynamics is ob-
served when there is bulk noise, and this happens in our
model when the interaction distance is equal or larger than 2.
Thus, a spin surrounded by eight parallel spins can still flip if
at least one of the four third NNs is antiparallel. Indeed,
simulations taking up to second NNs �z=8� also revealed GV
only, but increasing the interactions up to third NNs �z
=12�, all GV, Ising and DP transitions were observed �see
Fig. 3�. This is consistent with the work by Droz et al. �5�, in
which they studied an absorbing Ising model in two dimen-
sions, and found that extending the interaction range up to
z=12 neighbors, the transition from disorder to order splits
into a first Ising transition that breaks the symmetry, and then
a DP transition to the unique absorbing state selected by the
spontaneous symmetry breaking.

In Fig. 3 we plot the numerical results for z=12 neigh-
bors. We see that for b=−0.25 �Fig. 3�a��, the decay of � and
P at aGV�−0.1105 correspond to that of a GV transition,
whereas for b=0.5 �Fig. 3�b��, the transition to complete or-
der happens at a value aDP�0.2127 at which �� t−�, N� t�

and P� t−� �not shown�, with ��0.45 and ��0.2295, i.e.,
DP critical exponents. In order to find the Ising transition, we
calculated the Binder cumulants U=1−m4 /3m2

2 �Fig. 3�c��,
where m4 and m2 are the fourth and second moments of the
magnetization, as a function of a. As we can see, at the

critical point aI�0.205, the curves of the Binder cumulants
for different system sizes cross each other at the value U
�0.56, similar to the universal value 0.6107 of the 2D Ising
model.

IV. CONCLUSIONS

Summing up, we have derived from the microscopic dy-
namics, the Langevin equation for the magnetization field of
general nonequilibrium spin systems with two symmetric ab-
sorbing states. This equation agrees with the one introduced
in previous work, but now the dependence of the different
terms on the flipping probability is explicitly stated. This
methodology allows one to predict the macroscopic behav-
ior, such as critical properties and ordering dynamics, by
simply knowing the derivatives of the transition probabili-
ties. A large class of models in many different disciplines can
be studied in this way. The generalization of this approach to
models with an arbitrary number of symmetric absorbing
states seems to be challenging.

ACKNOWLEDGMENTS

We are very grateful to Maxi San Miguel and Miguel A.
Muñoz for fruitful discussions. We acknowledge support
from project FISICOS �Grant No. FIS2007-60327� of MEC
and FEDER, and NEST-Complexity project PATRES �Grant
No. 043268�.

10
1

10
2

10
3

10
4

t

5

10

15

1/ρ
10

-4

10
-2

10
0

10
2

P

10
1

10
2

10
3

10
4

t
10

-6

10
-4

10
-2

N

(a) (b)

(c)

FIG. 2. �Color online� Simulation results showing GV transi-
tions on a 2D square lattice with first-nearest-neighbor interactions
�z=4�. �a� 1 /� vs time on a log-linear scale, on a lattice of side L
=400, starting from a random initial condition with zero magneti-
zation. �b� Survival probability P and �c� density of up spins N on a
8002 lattice, starting from a quenched configuration. Curves are
averages over 100 realizations in �a� and 105 realizations in �b�,�c�,
for b=3.0, 0.5, and −0.25 �from top to bottom� and several values
of a around the corresponding critical points aGV=1.178, 0.1, and
−0.1045. Straight dotted lines have slopes 2 /� in �a�, −0.95 in �b�,
and 0 in �c�. Curves for b=3.0 and 0.5 are up-shifted for more
clarity.
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FIG. 3. �Color online� GV, DP, and Ising transitions on a 2D
square lattice of side L=400 with up to third-nearest-neighbor �z
=12�. �a� 1 /� vs time on a log-linear scale, for b=−0.25 and values
of a around the GV critical point aGV�−0.1105. �b� � vs time on a
log-log scale for b=0.5 and values of a around the DP critical point
aDP�0.2127. �c� Binder cumulant U vs a for b=0.5. Curves cross
at aI�0.205, where U�0.56, close to the universal value 0.6107 of
the d=2 Ising model �horizontal dashed line�. �a� Survival probabil-
ity P and �b� density of up spins N, on a 8002 lattice, starting from
a quenched configuration. Curves are averages over 105 realiza-
tions. Dashed straight lines have slopes 2 /� and −1 in �a� and its
inset, respectively, whereas the slopes are −0.45 and 0.2295 in �b�.
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